How computers have changed how we do Physics: Chaos and Climate

MYLES ALLEN

Environmental Change Institute, School of Geography and the Environment &

Atmospheric, Oceanic & Planetary Physics

University of Oxford

myles.allen@ouce.ox.ac.uk

So what have computers ever done for us?

- Chaos in weather and seasonal forecasting
- Understanding ocean climate
- Weather and climate change
- Centennial climate prediction

Edward Lorenz, 1917-2008

VOLUME :

JOURNAL OF THE ATMOSPHERIC SCIENCES

ec

The Lorenz (1963) system

Three dimensional, deterministic: $\mathbf{x} = \mathbf{x}(x, y, z)$ with the Jacobian $\dot{\mathbf{f}}(\mathbf{x}) = \mathbf{J}(\mathbf{x})$ $\mathbf{J} = \begin{pmatrix} -\sigma & \sigma & 0 \\ r - z & -1 & -x \\ y & x & -b \end{pmatrix}$

Volume contraction in the L'63 system

Phase space volume: occupied by a set of points in L'63

$$\dot{V} = \int_{S} \mathbf{f} \cdot \mathbf{n} \, dA$$
$$= \int_{V} \nabla \cdot \mathbf{f} \, dV$$
$$= \int_{V} tr(\mathbf{J}) \, dV$$
$$= (-\sigma - 1 - b)V$$

So it's dissipative:

$$V(t) = V(0)e^{(-\sigma - 1 - b)t}$$

Stability and error growth in the L'63 system

For
$$r > r_H = \frac{S(S+b+3)}{S-b-3}$$
 we have

No stable fixed points & no stable periodic orbits. So volumes contract, but not to a point...

Stability and error growth in the L'63 system

What happens to a small perturbation, $d\mathbf{x}$? $d\mathbf{x}_{t+dt} = (\mathbf{I} + \mathbf{J}dt) d\mathbf{x}_t$ $= \mathbf{U}(\mathbf{I} + \mathbf{W}dt) \mathbf{V}^T d\mathbf{x}_t$ where $\mathbf{J} = \mathbf{U}\mathbf{W}\mathbf{V}^T$ is the singular value decomposition. So: a perturbation aligned with any basis vector \mathbf{v}_j grows or shrinks by a factor $(1 + w_j dt)$ and rotates to align with \mathbf{u}_j

Stability and error growth in the L'63 system

Non-linear evolution of singular vectors during the January 2009 stratospheric sudden warming

L. Coy and C. Reynolds (2013)

Quarterly Journal of the Royal Meteorological Society Volume 140, Issue 680, pages 1013-1024, 20 JUN 2013 DOI: 10.1002/qj.2181 http://onlinelibrary.wiley.com/doi/10.1002/qj.2181/full#fig3

Scales of motion in the ocean

(courtesy of NASA and ECCO2 ocean reanalysis project)

 http://svs.gsfc.nasa.gov/vis/a010000/a010800/a010 841/index.html

Ocean eddies and ocean climate

(courtesy of David Marshall, Atmospheric, Oceanic & Planetary Physics)

Ocean models behave very differently with parameterised and explicit eddies

(Munday et al., 2013)

So what about the weather a little closer to home?

Storms and floods in January 2014 N. Schaller et al, *Nature Climate Change*, February 2016

The wettest January and the wettest winter in the world's longest daily weather record: Oxford, 1767-present

Ian Ashpole making history

With the usual impacts

Is climate change "making storms stronger"?

Global mean sea-level trend August 1993-July 2013

Sea level rise and Typhoon Haiyan

Examples from Trenberth *et al*, *Nature Climate Change*, 2015

Atmospheric moisture and 2013 Boulder floods

Back to L'63, as modified by Tim Palmer (2003)

Impose an external forcing

Forcing *halves* the risk of x-coordinate exceeding a threshold

Now consider the role of external forcing in each of these extreme events

External forcing *increases* magnitude of individual events

External forcing *increases* magnitude of individual events

So even if climate change makes individual storms stronger, it isn't necessarily loading the weather dice towards stronger storms

In silico experiments simulating extreme weather

January 2014 observed precipitation & MSLP anomalies Precipitation and MSLP anomalies in the wettest 1% of the "actual conditions" ensemble

Weather regimes in the North Atlantic in winter

40

20

20

0

40

0

.20

-20

Small increase in number of days in the "zonal"

UNIVERSITY OF OXFORD

Change in risk of low pressure at 60N,20W

Change in risk of high Southern England rainfall

So what about the flagship climate prediction problem?

So what about the flagship climate prediction problem? Compare to a 1980s 2-parameter ODE

And frankly, these models can give more grief then they are worth...

Global mean temperature projections (RCP 4.5), relative to 1986–2005

Although the update looks a little less exciting (courtesy of Ed Hawkins)

Computers have clearly transformed weather & regional climate prediction

- See this link for an impressive demonstration of how high-resolution computer modelling has transformed our understanding of year-to-year variations in Atlantic hurricane risk:<u>http://www.gfdl.noaa.gov/bibliography/related_files/Knutson0701.pd</u>
- And just to prove the didn't get lucky in 2007, here is an updated comparison of Tom Knutson:
 North Atlantic Hurricane Frequency

Department of Physics

But (fortunately) we don't actually seem to need them to predict global temperature...

